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BEHAVIOR OF A FLOATING ELASTIC PLATE

DURING VIBRATIONS OF A BOTTOM SEGMENT

UDC 532.59:539.3:534.1L. A. Tkacheva

The Wiener–Hopf technique is used to obtain an analytical solution for the problem of vibrations of
a floating semi-infinite elastic plate due to earthquake-induced vibrations of a bottom segment. An
explicit solution is obtained ignoring the inertial term. The surface-wave amplitudes and ice-plate
deflection are studied numerically as functions of the frequency and position of the vibrating bottom
segment, ice thickness, and fluid depth.
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Introduction. The problem of the hydroelastic behavior of floating elastic plates has been studied earlier
as applied to an ice cover [1–3]. At present, interest in this problem has increased because of projects on the
construction of floating airfields, artificial islands, and floating platforms of various applications. Because of the
huge sizes of such objects, the similarity parameters are difficult to satisfy in experiments; therefore, numerical
modeling plays a great role in their study.

The problem of surface-wave diffraction on a floating elastic plate has been studied fairly extensively. Less
attention has been given to the dynamic behavior of a floating plate under external loading (a review [4]) and plate
behavior during earthquakes [5]. In [5], the bottom is modeled by a homogeneous elastic medium (half-space),
in which longitudinal and transverse waves propagate from the earthquake epicenter, and the fluid is considered
compressible and imponderable. The present paper studies the behavior of a semi-infinite elastic plate floating on
the surface of an incompressible ponderable fluid under specified periodic vibrations of the bottom. An analytical
solution of this problem in a plane formulation is constructed using the Wiener–Hopf technique.

1. Formulation of the Problem. It is assumed that the fluid is perfect and incompressible, the fluid
depth is H0, and its flow is vortex-free. The plate is a semiplane of constant thickness h. The plate vibrations are
caused by time-periodic vibrations of the bottom. The left edge of the plate is taken to be the origin of Cartesian
coordinates Oxy. The plate thickness is assumed to be much smaller than length of the waves propagating in the
plate. We use the model of thin plates. The plate draft is ignored, and the boundary conditions are extended to
the unperturbed water surface.

The fluid-velocity potential ϕ satisfies the Laplace equation and the boundary conditions

∆ϕ = 0 (−H0 < y < 0),

ϕy = wt (y = 0,−H0), w(x,−H0, t) = u(x) e−iωt,

D
∂4w

∂x4
+ ρ0h

∂2w

∂t2
= p (y = 0, x > 0),

(1.1)

p = 0 (y = 0, x < 0), p = −ρ(ϕt + gw).

Here w is the vertical displacement of the upper surface of the fluid (plate), p is the hydrodynamic pressure, g is
the acceleration of gravity, D is the flexural rigidity of the plate, ρ and ρ0 are the densities of the fluid and plate,
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t is time, ω is the vibration frequency of the bottom, and u(x) is the amplitude of bottom displacements. At the
edge of the plate, the moment and shear force should vanish:

∂2w

∂x2
=

∂3w

∂x3
= 0 (y = 0, x = 0). (1.2)

We first consider the case of a point source on the bottom: u(x) = u0δ(x− x0). The time dependence of all
functions is expressed by the factor e−iωt. Let us enter the characteristic length l = g/ω2 and the dimensionless
variables

x′ =
x

l
, y′ =

y

l
, x∗ =

x0

l
, H =

H0

l
, ϕ′ =

ωϕ

gu0
, w′ =

w

u0
, t′ = ωt

(below, the primes are omitted). Writing the potential as ϕ = φ e−it, from (1.1) and (1.2), we obtain the following
boundary-value problem for φ:

∂2φ

∂x2
+

∂2φ

∂y2
= 0 (−H < y < 0);

∂φ

∂y
= −iδ(x− x∗) (y = −H); (1.3)

∂φ

∂y
− φ = 0 (y = 0, x < 0); (1.4)

(
β

∂4

∂x4
+ 1− d

)∂φ

∂y
− φ = 0 (y = 0, x > 0), β =

D

ρgl4
, d =

ρ0h

ρl
; (1.5)

∂2

∂x2

∂φ

∂y
=

∂3

∂x3

∂φ

∂y
= 0 (y = 0, x = 0). (1.6)

Here H, x∗, β, and d are the dimensionless parameters of the problem: the fluid depth, the center of the vibrating
segment, the reduced rigidity of the plate, and the plate draft. In addition, the radiation conditions for |x| → ∞
and the regularity conditions near the edges (local boundedness of the energy) should be satisfied.

2. Integral Equations. The solution of the problem is constructed using the Wiener–Hopf technique in
the Jones interpretation [6]. Let us consider the following functions of the complex variable α:

Φ+(α, y) =

∞∫
0

eiαx φ(x, y) dx, Φ−(α, y) =

0∫
−∞

eiαx φ(x, y) dx,

Φ(α, y) = Φ−(α, y) + Φ+(α, y). (2.1)

The function Φ+(α, y) is defined in the upper semiplane Im α > 0, and the function Φ−(α, y) in the lower semiplane
Im α < 0. By analytic continuation, these functions can be defined on the entire complex plane. The function
Φ(α, y) is the Fourier transform of the function φ(x, y) and satisfies the equation

∂2Φ
∂y2

− α2Φ = 0.

On the bottom, condition (1.3) becomes

∂Φ
∂y

(α,−H) = −i eiαx∗ . (2.2)

The solution of this equation sought in the form

Φ(α, y) = C(α)Z(α, y) + S(α) sinh (α(y + H)), Z(α, y) = cosh (α(y + H))/ cosh (αH).

From (2.2), we obtain S(α) = −i eiαx∗ /α. Then,

Φ(α, y) = C(α)Z(α, y)− i eiαx∗ sinh (α(y + H))/α. (2.3)
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We denote by D±(α) integrals of type (2.1) in which the integrand φ is replaced by the left side of con-
dition (1.4) and by F±(α) similar expressions in which the integrand is the left side of expression (1.5). Let us
introduce the functions

D(α) = D−(α) + D+(α), F (α) = F−(α) + F+(α),

which are the Fourier transforms of dispersion functions, which will be understood in the sense of generalized
functions [7]:

D(α) =
∂Φ
∂y

(α, 0)− Φ(α, 0), F (α) = (βα4 + 1− d)
∂Φ
∂y

(α, 0)− Φ(α, 0).

From the boundary conditions (1.4) and (1.5), we have

D−(α) = 0, F+(α) = 0.

Then,

D+(α) = D(α) = C(α)K1(α)− i eiαx∗ [cosh (αH)− sinh (αH)/α]; (2.4)

F−(α) = F (α) = C(α)K2(α)− i eiαx∗ [(βα4 + 1− d) cosh (αH)− sinh (αH)/α]. (2.5)

Here K1(α) = α tanh (αH) − 1 and K2(α) = (βα4 + 1 − d)α tanh (αH) − 1 are the dispersion functions for the
free-surface fluid and the fluid under the plate. Both dispersion functions are even. The dispersion relation on the
free surface K1(α) = 0 has two real roots ±γ and a countable set of purely imaginary roots ±γn (n = 1, 2, . . .)
which are symmetric about the real axis [8]; γn → inπ/H as n →∞.

The dispersion relation under the plate K2(α) = 0 has two real roots ±α0, a countable set of purely imaginary
roots ±αn (n = 1, 2, . . .) symmetric about the real axis, and four complex roots which are symmetric about the real
and imaginary axes [8]. We denote by α−1 the root lying in the first quadrant and by α−2 the root in the second
quadrant; αn → inπ/H at n →∞.

The real roots of the dispersion relations determine the propagating surface and flexural-gravity waves, and
the remaining roots determine the edge waves, which damp exponentially away from the perturbation source.

We examine the behavior of the functions Φ±(α, y). For x → −∞, the potential φ represents a wave of
the form Re−iγx and a set of exponentially damped waves. The least damped wave corresponds to the root γ1.
Therefore, Φ−(α, y) is analytic in the semiplane Im α < |γ1| except for the pole at α = γ. For x →∞, the potential φ

represents a wave of the form T eiα0x and a set of exponentially damped modes. Therefore, the function Φ+(α, y) is
analytic in the semiplane {Im α > −c} except for the pole at the point α = −α0, where c = min {Im(α1), Im(α−1)}.

Eliminating C(α) from relations (2.4) and (2.5), we obtain the equation

[F−(α) + i eiαx∗ [(βα4 + 1− d) cosh (αH)− sinh (αH)/α]]K(α)

= D+(α) + i eiαx∗ [cosh (αH)− sinh (αH)/α], (2.6)

K(α) = K1(α)/K2(α).

According to the Wiener–Hopf technique, it is necessary to factorize the function K(α), i.e., to write it as

K(α) = K+(α)K−(α),

where the functions K±(α) are regular in the same regions as the functions Φ±(α, y). The function K(α) has zeroes
and poles at the points ±γ and ±α0, respectively, on the real axis. Therefore, we consider the analyticity regions
S+ and S−, where S+ is the semiplane Im α > −c with cuts eliminating the points −α0 and −γ and S− is the
semiplane Im α < |γ1| with cuts eliminating the points α0 and γ.

Let us introduce the function

g(α) = K(α)β(α2 − α2
0)(α

2 − α2
−1)(α

2 − α2
−2)/(α2 − γ2).

The function g(α) does not have zeroes on the real axis, is limited, and tends to unity at infinity. We factorize g(α)
as follows [6]:

232



g(α) = g+(α)g−(α), g±(α) = exp
[
± 1

2πi

∞∓iσ∫
−∞∓iσ

ln g(x)
x− α

dx
]
, σ < |γ1|.

The function K±(α) is defined by the formula

K±(α) =
(α± γ)g±(α)√

β (α± α0)(α± α−1)(α± α−2)
.

In this case, K+(α) = K−(−α).
Dividing Eq. (2.6) by K+(α) and performing some transformations, we obtain

F−(α)K−(α)− i eiαx∗(βα4 − d)
cosh (αH)K2(α)K+(α)

=
D+(α)
K+(α)

. (2.7)

Using the representation

eiαx∗(βα4 − d)
cosh (αH)K2(α)K+(α)

= L+(α) + L−(α),

where

L±(α) = ± 1
2πi

∞∓iσ∫
−∞∓iσ

eiζx∗(βζ4 − d)
cosh (ζH)K2(ζ)K+(ζ)(ζ − α)

dζ

= ± 1
2πi

∞∓iσ∫
−∞∓iσ

eiζx∗(βζ4 − d)K−(ζ)
cosh (ζH)K1(ζ)(ζ − α)

dζ, σ < min {|γ1|, c}, (2.8)

we write Eq. (2.7) as

K−(α)F−(α)− iL−(α) = D+(α)/K+(α) + iL+(α).

The left side of this equality contains a function analytic in the region S−, and the right side contains a function
analytic in S+. By analytic continuation, one obtains a function analytic in the entire complex plane. According
to Liouville’s theorem, this function is a polynomial. The degree of the polynomial is determined by the behavior
of the functions as |α| → ∞.

The condition of local boundedness of the energy implies that near the edge of the plate, the velocities have
a singularity of order not higher than O(r−λ) (λ < 1; r is the distance to the plate edge). Then, for |α| → ∞, the
function F−(α) has order not higher than O(|α|λ+3) and the function D+(α) has order not higher O(|α|λ−1) [7].
At infinity, the functions K±(α) have order O(|α|−2) because g±(α) → 1 as |α| → ∞. It is easy to show that
|L±(α)| = O(|α|−1) as |α| → ∞. Therefore, the degree of the polynomial is equal to unity and

D+(α)/K+(α) + iL+(α) = i(a + bα), (2.9)

where a and b are unknown constants, which will be determined from conditions (1.6).
Expressing D+(α) from relation (2.9) and taking into account (2.3) and (2.4), we obtain

Φ(α, y) = iZ(α, y){K+(α)[a + bα− L+(α)] + eiαx∗ [cosh (αH)− sinh (αH)/α]}/K1(α)

− i eiαx∗ sinh (α(y + H))/α.

By inverse Fourier transformation, the potential φ is expressed as

φ(x, y) = − 1
2πi

∞∫
−∞

e−iαx K+(α)[a + bα− L+(α)]Z(α, y)
K1(α)

dα

− 1
2πi

∞∫
−∞

e−iα(x−x∗)[cosh (αH)− sinh (αH)/α]Z(α, y)
K1(α)

dα +
1

2πi

∞∫
−∞

e−iα(x−x∗) sinh (α(y + H))
α

dα. (2.10)
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The integration contour should lie entirely in the intersection of the regions S+ and S−. The integration contour
can be chosen on the real axis so that it encircles the points α0 and γ from below and the points −α0 and −γ from
above.

For the derivative of the potential on the real axis, we obtain the expression

∂ϕ

∂y
(x, 0) = − 1

2πi

∞∫
−∞

e−iαx K+(α)[a + bα− L+(α)]α tanh (αH)
K1(α)

dα− 1
2πi

∞∫
−∞

e−iα(x−x∗)

cosh (αH)K1(α)
dα. (2.11)

Multiplying the numerator and denominator in the first integral by K−(α) and performing some transformations,
we obtain the following expression for the derivative of the potential:

∂ϕ

∂y
(x, 0) = − 1

2πi

∞∫
−∞

e−iαx[a + bα + L−(α)]α tanh (αH)
K−(α)K2(α)

dα− 1
2πi

∞∫
−∞

e−iα(x−x∗)

cosh (αH)K2(α)
dα. (2.12)

The integral is calculated using residue theory. On the plate at x > 0, we have

∂ϕ

∂y
(x, 0) =

∞∑
j=−2

eiαjx αj tanh (αjH)[a− bαj + L−(−αj)]
K−(−αj)K ′

2(−αj)
−

∞∑
j=−2

eiαj |x−x∗|

cosh (αjH)K ′
2(αj)

. (2.13)

From the dispersion relation under the plate, we have

αj tanh (αjH) = −K1(αj)/(βα4
j − d).

Substitution of this expression into formula (2.13) and then into boundary conditions (1.6) yields the following
system of second-order linear algebraic equations for the unknowns a and b:(

A11 A12

A21 A22

) (
a

b

)
=

(
C1

C2

)
. (2.14)

According to the residue theorem, the coefficients of the system are written as

A11 =
4∑

k=1

reszk

(α2K+(α)
βα4 − d

)
, A12 = A21,

A21 =
4∑

k=1

reszk

(α3K+(α)
βα4 − d

)
, A22 =

4∑
k=1

reszk

(α4K+(α)
βα4 − d

)
,

C1 = −
4∑

k=1

reszk

(α2K+(α)L−(α)
βα4 − d

)
, C2 = −

4∑
k=1

reszk

(α3K+(α)L−(α)
βα4 − d

)
,

where zk are roots of the polynomial βα4 − δ = 0. From (2.8), we have

L+(α) =



∞∑
j=−2

eiαjx∗(βα4
j − d)

cosh (αjH)K ′
2(αj)K+(αj)(αj − α)

+
eiαx∗(βα4 − d)

cosh (αH)K2(α)K+(α)
, x∗ > 0, α 6= αj ,

−
∞∑

k=0

e−iγkx∗(βγ4
k − d)K+(γk)

cosh (γkH)K ′
1(γk)(γk + α)

, x∗ < 0,

L−(α) =


−

∞∑
j=−2

eiαjx∗(βα4
j − d)

cosh (αjH)K ′
2(αj)K+(αj)(αj − α)

, x∗ > 0,

∞∑
k=0

e−iγkx∗(βγ4
k − d)K+(γk)

cosh (γkH)K ′
1(γk)(γk + α)

+
eiαx∗(βα4 − d)K−(α)

cosh (αH)K1(α)
, x∗ < 0, α 6= −γk.

The coefficients of the system are converted as follows:

A11 =
4∑

k=1

K+(zk)
zk

, A12 = A21 =
4∑

k=1

K+(zk), A22 =
4∑

k=1

zkK+(zk),
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C1 = −
4∑

k=1

K+(zk)L−(zk)
zk

, C2 = −
4∑

k=1

K+(zk)L−(zk).

Determining the coefficients a and b from system (2.14) and substituting them into formulas (2.10)–(2.12), we find
all the required quantities.

The plate deflection is determined from (1.1) using the relation w(x) = iϕy(x, 0) and expression (2.13).
The second term in (2.13) represents the waves propagating from the perturbation point and coincides with the
expression for the deflection of an infinite plate, and the first term in (2.13) represents the wave reflected from the
edge. The elevation of the free boundary η(x) has the form

η(x) = −i
∞∑

k=0

e−iγkx K+(γk)[a + bγk − L+(γk)]
K ′

1(γk)
− i

∞∑
k=0

eiγk|x−x∗|

cosh (γkH)K ′
1(γk)

.

For x∗ > 0, we obtain the following formulas for the plate deflection and the free-boundary elevation:

w(x) = −i
∞∑

j=−2

eiαjx αj tanh (αjH)
K+(αj)K ′

2(αj)

[
a− bαj −

∞∑
m=−2

eiαmx∗(βα4
m − d)

cosh (αmH)K ′
2(αm)K+(αm)(αm + αj)

]

− i
∞∑

j=−2

eiαj |x−x∗|

cosh (αjH)K ′
2(αj)

, (2.15)

η(x) = −i

∞∑
k=0

e−iγkx K+(γk)
K ′

1(γk)

[
a + bγk −

∞∑
m=−2

eiαmx∗(βα4
m − d)

cosh (αmH)K ′
2(αm)K+(αm)(αm − γk)

]
.

For x∗ < 0, the analogous formulas have the form

w(x) = −i
∞∑

j=−2

eiαjx αj tanh (αjH)
K+(αj)K ′

2(αj)

[
a− bαj +

∞∑
k=0

e−iγkx∗(βγ4
k − d)K+(γk)

cosh (γkH)K ′
1(γk)(γk − αj)

]
,

η(x) = −i
∞∑

k=0

e−iγkx K+(γk)
K ′

1(γk)

[
a + bγk +

∞∑
m=0

e−iγmx∗(βγ4
m − d)K+(γm)

cosh (γmH)K ′
1(γm)(γm + γk)

]
− i

∞∑
k=0

eiγk|x−x∗|

cosh (γkH)K ′
1(γk)

. (2.16)

The second sum in expressions (2.15) and (2.16) represents the perturbation from the source, and first sum the
perturbation reflected from the edge.

3. Solution Ignoring the Inertial Term. According to the above assumptions, d � 1. Therefore, in
Eq. (1.5), the parameter d can be ignored. For d = 0, the solution of the problem can be obtained in explicit form,
namely:

A11 = K ′
+(0), A12 = A21 = K+(0), A22 = 0, C1 = −(K+(0)L−(0))′, C2 = −K+(0)L−(0).

Then, we have

a = −L−(0) =


β

∞∑
j=−2

eiαjx∗ α3
j

cosh (αjH)K ′
2(αj)K+(αj)

, x∗ > 0,

−β
∞∑

k=0

e−iγkx∗ K+(γk)γ3
k

cosh (γkH)K ′
1(γk)

, x∗ < 0,

b = −L′−(0) =



∞∑
j=−2

eiαjx∗ α2
j

cosh (αjH)K ′
2(αj)K+(αj)

, x∗ > 0,

∞∑
k=0

e−iγkx∗ K+(γk)γ2
k

cosh (γkH)K ′
1(γk)

, x∗ < 0.

For x∗ > 0, we obtain

w(x) = iβ
∞∑

j=−2

eiαjx α3
j tanh (αjH)

K+(αj)K ′
2(αj)

∞∑
m=−2

eiαmx∗ α2
m

cosh (αmH)K ′
2(αm)K+(αm)(αm + αj)

− i

∞∑
j=−2

eiαj |x−x∗|

cosh (αjH)K ′
2(αj)

,
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η(x) = iβ
∞∑

k=0

e−iγkx γ2
kK+(γk)

K ′
1(γk)

∞∑
m=−2

eiαmx∗ α2
m

cosh (αmH)K ′
2(αm)K+(αm)(αm − γk)

.

For x∗ < 0, these formulas have the form

w(x) = −iβ
∞∑

j=−2

eiαjx α3
j tanh (αjH)

K+(αj)K ′
2(αj)

∞∑
k=0

e−iγkx∗ γ2
kK+(γk)

cosh (γkH)K ′
1(γk)(γk − αj)

,

η(x) = −iβ
∞∑

k=0

e−iγkx γ2
kK+(γk)

K ′
1(γk)

∞∑
m=0

e−iγmx∗ K+(γm)γ2
m

cosh (γmH)K ′
1(γm)(γm + γk)

− i
∞∑

k=0

eiγk|x−x∗|

cosh (γkH)K ′
1(γk)

.

Let us now consider the general case of vibrations of the bottom. In this case, multiplying the obtained
solution by u(x∗) and integrating over x∗, we obtain all values of interest to us. The solution is written as the sum
of two terms that correspond to the bottom segments under the plate and outside the plate w(x) = w1(x) + w2(x)
and η(x) = η1(x) + η2(x), where w1(x) and η1(x) are the complex vibration amplitudes of the plate and the free
surface for the bottom vibrations given by

w(x,−H0, t) =
{

0, x < 0,

u(x) e−iωt, x > 0,

and w2(x) and η2(x) are the indicated vibration amplitudes for the bottom vibrations given by

w(x,−H0, t) =
{

u(x) e−iωt, x < 0,

0, x > 0;

w1(x) = iβ

∞∑
j=−2

eiαjx α3
j tanh (αjH)

K+(αj)K ′
2(αj)

∞∑
m=−2

Amα2
m

cosh (αmH)K ′
2(αm)K+(αm)(αm + αj)

− i

∞∑
j=−2

Ãj(x)
cosh (αjH)K ′

2(αj)
,

η1(x) = iβ
∞∑

k=0

e−iγkx K+(γk)γ2
k

K ′
1(γk)

∞∑
m=−2

Amα2
m

cosh (αmH)K ′
2(αm)K+(αm)(αm − γk)

,

w2(x) = −iβ
∞∑

j=−2

eiαjx α3
j tanh (αjH)

K+(αj)K ′
2(αj)

∞∑
k=0

Bkγ2
kK+(γk)

cosh (γkH)K ′
1(γk)(γk − αj)

,

η2(x) = −iβ
∞∑

k=0

e−iγkx γ2
kK+(γk)

K ′
1(γk)

∞∑
m=0

BmK+(γm)γ2
m

cosh (γmH)K ′
1(γm)(γm + γk)

− i
∞∑

k=0

B̃k(x)
cosh (γkH)K ′

1(γk)
,

where

Ãj(x) =

∞∫
0

eiαj |x−x∗| u(x∗) dx∗, Aj =

∞∫
0

eiαjx∗ u(x∗) dx∗,

B̃k(x) =

0∫
−∞

e−iγk|x−x∗| u(x∗) dx∗, Bk =

0∫
−∞

e−iγkx∗ u(x∗)dx∗.

4. Numerical Results. Numerical calculations were performed for a semi-infinite ice plate in the ocean
for the following parameter values: E = 6 · 109 N/m2, ρ = 1025 kg/m3, and ρ0 = 922.5 kg/m3. The displacements
of the bottom were specified as [9]

u(x) = cos2 (π(x− x0)/(2s)),

where s is the half-width and x0 is the center of the vibrating segment of the bottom. The plate thickness, fluid
depth, and the frequency, center, and half-width of the vibrating segment of the bottom were varied.

Of the greatest interest is the case where the vibrating segment of the bottom is under the plate. Figure 1
shows curves of the outgoing-wave amplitudes in the fluid and in the plate and the plate-vibration amplitudes at the
edge and at the point x0 (epicenter) versus frequency for the following parameter values: x0 = 1500 m, s = 250 m,
h = 5 m, and H0 = 200 m. It is seen from the figure that the maximum vibration amplitudes are observed for
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Fig. 1. Outgoing-wave amplitudes in the fluid (curve 1) and in the plate (curve 2) and the plate-
vibration amplitude at the edge (curve 3) and epicenter (curve 4) versus frequency.

Fig. 2. Plate-vibration amplitudes for various frequencies: curves 1–3 correspond to values of 0.1,
0.3, and 1 sec−1, respectively.
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Fig. 3. Effect of the position of the vibrating bottom segment on the vibration amplitudes: the solid
curve refers to x0 = 0, the dashed curve to x0 = 1000 m, the dot-and-dashed curve to x0 = 250 m, and
the dotted curve to x0 = −1000 m.

Fig. 4. Effect of fluid depth on the plate-vibration amplitude: curves 1–3 refer to depths of 200, 500
and 1000 m, respectively.

ω = 0.25–0.3 sec−1. As the frequency increases, all amplitudes decrease but the amplitude at the epicenter remains
rather large.

Figure 2 shows curves of the plate-vibration amplitudes for various frequencies and the same values of the
remaining parameters (the dashed curve corresponds to an infinite plate). For low frequencies, the dimensionless
parameter β is small, the plate behaves as the free surface of the fluid, and the plate-vibration amplitudes are
almost constant. As the frequency increases, the vibration amplitude becomes much larger at the center than at the
remaining points. For high frequencies, only the neighborhood of the vibrating bottom segment vibrates and the
vibration amplitudes of the remaining part of the plate are small. The edge effect is insignificant and is manifested
only near the edge of the plate.

Figure 3 gives curves of the plate-vibration amplitudes for ω = 0.3 sec−1, s = 250 m, h = 5 m, H0 = 200 m,
and various positions of the vibrating segment of the bottom. As is evident from the figure, the maximum vibration
amplitudes are reached above the center of the vibrating bottom segment when it is located under the plate edge.

As the depth increases, the plate-vibration amplitudes decrease, as is evident from Fig. 4, which gives curves
of the plate-vibration amplitudes for ω = 0.3 sec−1, x0 = 1000 m, s = 250 m, h = 5 m, and various depths. As the
depth increases, the curves become flatter.

Figure 5 gives curves of the vibration amplitudes of the fluid and the plate versus plate thickness for
ω = 0.3 sec−1, x0 = 750 m, s = 250 m, h = 5 m, and H0 = 100 m. When the plate thickness is small, the
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Fig. 5. Effect of plate thickness on the vibration amplitudes of the fluid and the plate: curves 1 and 2
refer to the outgoing-wave amplitudes in the fluid and plate, respectively, curve 3 to the amplitude of plate
deflection at the edge, and curve 4 to the amplitude of plate deflection at the center x0.

Fig. 6. Comparison of the solution taking into account the plate inertia (solid curve) and the solution
ignoring it (dashed curve).

amplitude at the point x0 is much larger than that at the edge and the amplitudes of the outgoing waves in the
fluid and plate are equal. As the thickness increases, the amplitude at the epicenter becomes comparable to the
amplitude at the edge and the amplitude of the outgoing wave in the fluid becomes much larger than that in the
plate.

Figure 6 shows a comparison of the solution taking into account the plate inertia (solid curve) and the
solution ignoring it (dashed curve) for ω = 0.3 sec−1, x0 = 1000 m, s = 250 m, h = 5 m, and H0 = 200 m. In the
figure, the curves are closely spaced. The reason for this is that the inertia of the plate is smaller than that of the
fluid. The results obtained show that the explicit solution ignoring the inertia of the plate can be successfully used
to estimate the plate deflection.
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